

Teaching for Mastery

Questions, tasks and activities to support assessment

Year 1
Mike Askew, Sarah Bishop, Clare Christie, Sarah Eaton, Pete Griffin and Debbie Morgan

Contents

About the authors 3
Introduction 4
The structure of the materials 8
Number and Place Value 9
Addition and Subtraction 13
Multiplication and Division 17
Fractions 19
Measurement 22
Geometry 27

Acknowledgements:

Text © Crown Copyright 2015
Illustration and design © Oxford University Press 2015
Cover photograph by Suzy Prior
Photographs by shcreative p. 4; Suzy Prior p. 5
Oxford University Press would like to thank the following for permission to reproduce photographs: ARK Atwood Primary Academy, St Boniface RC Primary School and Campsbourne Infant and Junior School

The authors would like to thank Jane Imrie, of the NCETM, for her advice and support in reviewing the materials.

Mike Askew is Professor of Mathematics Education, the University of the Witwatersrand, Johannesburg. Mike has directed many research projects, including the influential 'Effective Teachers of Numeracy in Primary Schools', and was deputy director of the
 five-year Leverhulme Numeracy Research Programme. Mike's research has been widely published both in the academic arena and as books and resources for teachers.

Pete Griffin works at a national level as Assistant Director for the National Centre for Excellence in the Teaching of Mathematics. Pete has experience as a secondary teacher, Advisory Teacher, and lecturer in Mathematics Education at the Open
 University. Pete has worked with QCA and the National Strategies and has written and developed a wide range of teacher professional development materials.

Sarah Eaton is an Assistant Headteacher and Year 6 teacher. Sarah has been a Mathematics SLE with the Affinity Teaching School Alliance for four years, enabling her to lead CPD across the alliance. Sarah has been part of a Mathematics research project in Shanghai and
 Finland, and has been part of the KS2 teacher panel for the 2016 Maths tests.

Debbie Morgan holds a national role as Director of Primary Mathematics at the National Centre for Excellence in the Teaching of Mathematics. Debbie has experience as a primary teacher, Headteacher, Mathematics Advisor, Senior Lecturer in Mathematics
 Education and Director of a Mathematics Specialist Teacher Programme. Debbie currently provides advice and expertise to the DfE to support the implementation of the Primary Mathematics Curriculum.

Sarah Bishop is an Assistant Headteacher and Year 2 teacher with experience as a Primary Strategy Maths Consultant. She is currently a Mathematics SLE with Affinity Teaching School Alliance and has delivered CPD and school-to-school support as part of this role. Sarah has
 been involved in making the NCETM videos to support the National Curriculum and is part of the DfE Expert Group for Mathematics. More recently, Sarah has taken on the role of Primary Lead for the East Midlands South Maths Hub.

Clare Christie is a primary teacher and Maths Leader. Clare is also a Mathematics SLE, supporting schools with Maths teaching and learning. Clare is primary lead of the Boolean Maths Hub and a member of the ACME Outer Circle.

Introduction

In line with the curricula of many high performing jurisdictions, the National curriculum emphasises the importance of all pupils mastering the content taught each year and discourages the acceleration of pupils into content from subsequent years.

The current National curriculum document ${ }^{1}$ says:
'The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.' (National curriculum page 3)

Progress in mathematics learning each year should be assessed according to the extent to which pupils are gaining a deep understanding of the content taught for that year, resulting in sustainable knowledge and skills. Key measures of this are the abilities to reason mathematically and to solve increasingly complex problems, doing so with fluency, as described in the aims of the National curriculum:
'The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.' (National curriculum page 3)

1. Mathematics programmes of study: key stages 1 and 2, National curriculum in England, September 2013, p3

Assessment arrangements must complement the curriculum and so need to mirror these principles and offer a structure for assessing pupils' progress in developing mastery of the content laid out for each year. Schools, however, are only'required to teach the relevant programme of study by the end of the key stage. Within each key stage, schools therefore have the flexibility to introduce content earlier or later than set out in the programme of study' (National curriculum page 4). Schools should identify when they will teach the programmes of study and set out their school curriculum for mathematics on a year-by-year basis. The materials in this document reflect the arrangement of content as laid out in the National curriculum document (September 2013).

These Teaching for Mastery: Questions, tasks and activities to support assessment outline the key mathematical skills and concepts within each yearly programme and give examples of questions, tasks and practical classroom activities which support teaching, learning and assessment. The activities offered are not intended to address each and every programme of study statement in the National curriculum. Rather, they aim to highlight the key themes and big ideas for each year.

Ongoing assessment as an integral part of teaching

The questions, tasks, and activities that are offered in the materials are intended to be a useful vehicle for assessing whether pupils have mastered the mathematics taught.

However, the best forms of ongoing, formative assessment arise from well-structured classroom activities involving interaction and dialogue (between teacher and pupils, and between pupils themselves). The materials are not intended to be used as a set of written test questions which the pupils answer in silence. They are offered to indicate valuable learning activities to be used as an integral part of teaching, providing rich and meaningful assessment information concerning what pupils know, understand and can do.

The tasks and activities need not necessarily be offered to pupils in written form. They may be presented orally, using equipment and/or as part of a group activity. The encouragement of discussion, debate and the sharing of ideas and strategies will often add to both the quality of the assessment information gained and the richness of the teaching and learning situation.

What do we mean by mastery?

The essential idea behind mastery is that all children ${ }^{2}$ need a deep understanding of the mathematics they are learning so that:

- future mathematical learning is built on solid foundations which do not need to be re-taught;
- there is no need for separate catch-up programmes due to some children falling behind;
- children who, under other teaching approaches, can often fall a long way behind, are better able to keep up with their peers, so that gaps in attainment are narrowed whilst the attainment of all is raised.

There are generally four ways in which the term mastery is being used in the current debate about raising standards in mathematics:

1. A mastery approach: a set of principles and beliefs.

This includes a belief that all pupils are capable of understanding and doing mathematics, given sufficient time. Pupils are neither 'born with the maths gene' nor'just no good at maths'. With good teaching, appropriate resources, effort and a 'can do' attitude all children can achieve in and enjoy mathematics.
2. A mastery curriculum: one set of mathematical concepts and big ideas for all. All pupils need access to these concepts and ideas and to the rich connections between them. There is no such thing as 'special needs mathematics' or 'gifted and talented mathematics'. Mathematics is mathematics and the key ideas and building blocks are important for everyone.
3. Teaching for mastery: a set of pedagogic practices that keep the class working together on the same topic, whilst at the same time addressing the need for all pupils to master the curriculum and for some to gain greater depth of proficiency and understanding. Challenge is provided by going deeper rather than accelerating into new
2. Schools in England are required to adhere to the 0-25 years SEND Code of Practice 2015 when considering the provision for children with special educational needs and/or disability. Some of these pupils may have particular medical conditions that prevent them from reaching national expectations and will typically have a statement of Special Educational Needs/ Education Health Care Plan. Wherever possible children with special educational needs and/or a disability should work on the same curriculum content as their peers; however, it is recognised that a few children may need to work on earlier curriculum content than that designated for their age. The principle, however, of developing deep and sustainable learning of the content they are working on should be applied.
mathematical content. Teaching is focused, rigorous and thorough, to ensure that learning is sufficiently embedded and sustainable over time. Long term gaps in learning are prevented through speedy teacher intervention. More time is spent on teaching topics to allow for the development of depth and sufficient practice to embed learning. Carefully crafted lesson design provides a scaffolded, conceptual journey through the mathematics, engaging pupils in reasoning and the development of mathematical thinking.

4. Achieving mastery of particular topics and

 areas of mathematics. Mastery is not just being able to memorise key facts and procedures and answer test questions accurately and quickly. It involves knowing'why' as well as knowing 'that' and knowing 'how'. It means being able to use one's knowledge appropriately, flexibly and creatively and to apply it in new and unfamiliar situations. ${ }^{3}$ The materials provided seek to exemplify the types of skills, knowledge and understanding necessary for pupils to make good and sustainable progress in mastering the primary mathematics curriculum.
Mastery and the learning journey

Mastery of mathematics is not a fixed state but a continuum. At each stage of learning, pupils should acquire and demonstrate sufficient grasp of the mathematics relevant to their year group, so that their learning is sustainable over time and can be built upon in subsequent years. This requires development of depth through looking at concepts in detail using a variety of representations and contexts and committing key facts, such as number bonds and times tables, to memory.

Mastery of facts, procedures and concepts needs time: time to explore the concept in detail and time to allow for sufficient practice to develop fluency.

[^0]Practice is most effective when it is intelligent practice, ${ }^{4}$ i.e. where the teacher is advised to avoid mechanical repetition and to create an appropriate path for practising the thinking process with increasing creativity. (Gu 20045) The examples provided in the materials seek to exemplify this type of practice.

Mastery and mastery with greater depth

Integral to mastery of the curriculum is the development of deep rather than superficial conceptual understanding.'The research for the review of the National Curriculum showed that it should focus on "fewer things in greater depth", in secure learning which persists, rather than relentless, over-rapid progression. ${ }^{6}$ It is inevitable that some pupils will grasp concepts more rapidly than others and will need to be stimulated and challenged to ensure continued progression. However, research indicates that these pupils benefit more from enrichment and deepening of content, rather than acceleration into new content. Acceleration is likely to promote superficial understanding, rather than the true depth and rigour of knowledge that is a foundation for higher mathematics. ${ }^{7}$

Within the materials the terms mastery and mastery with greater depth are used to acknowledge that all pupils require depth in their learning, but some pupils will go deeper still in their learning and understanding.
Mastery of the curriculum requires that all pupils:

- use mathematical concepts, facts and procedures appropriately, flexibly and fluently;
- recall key number facts with speed and accuracy and use them to calculate and work out unknown facts;
- have sufficient depth of knowledge and understanding to reason and explain mathematical concepts and procedures and use them to solve a variety of problems.

4. Intelligent practice is a term used to describe practice exercises that integrate the development of fluency with the deepening of conceptual understanding. Attention is drawn to the mathematical structures and relationships to assist in the deepening of conceptual understanding, whilst at the same time developing fluency through practice.
5. Gu, L., Huang, R., \& Marton, F. (2004). Teaching with variation: A Chinese way of promoting effective mathematics learning. In Lianghuo, F., Ngai-Ying, W., Jinfa, C., \& Shiqi, L. (Eds.) How Chinese learn mathematics: Perspectives from insiders. Singapore: World Scientific Publishing Co. Pte. Ltd. page 315.
6. Living in a Levels-Free World, Tim Oates, published by the Department for Education https://www.tes.co.uk/teaching-resource/living-in-a-levels-free-world-by-tim-oates-6445426
7. This argument was advanced by the Advisory Committee for Mathematics Education on page 1 of its report: Raising the bar: developing able young mathematicians, December 2012.

A useful checklist for what to look out for when assessing a pupil's understanding might be:

A pupil really understands a mathematical concept, idea or technique if he or she can:

- describe it in his or her own words;
- represent it in a variety of ways (e.g. using concrete materials, pictures and symbols - the CPA approach) ${ }^{8}$
- explain it to someone else;
- make up his or her own examples (and nonexamples) of it;
- see connections between it and other facts or ideas;
- recognise it in new situations and contexts;
- make use of it in various ways, including in new situations. ${ }^{9}$

Developing mastery with greater depth is characterised by pupils' ability to:

- solve problems of greater complexity (i.e. where the approach is not immediately obvious), demonstrating creativity and imagination;
- independently explore and investigate mathematical contexts and structures, communicate results clearly and systematically explain and generalise the mathematics.

The materials seek to exemplify what these two categories of mastery and mastery with greater depth might look like in terms of the type of tasks and activities pupils are able to tackle successfully. It should, however, be noted that the two categories are not intended to exemplify differentiation of activities/ tasks. Teaching for mastery requires that all pupils are taught together and all access the same content as exemplified in the first column of questions, tasks and activities. The questions, tasks and activities exemplified in the second column might be used as deepening tasks for pupils who grasp concepts rapidly, but can also be used with the whole class where appropriate, giving all children the opportunity to think and reason more deeply.
8. The Concrete-Pictorial-Abstract (CPA) approach, based on Bruner's conception of the enactive, iconic and symbolic modes of representation, is a well-known instructional heuristic advocated by the Singapore Ministry of Education since the early 1980s. See https:// www.ncetm.org.uk/resources/44565 (free registration required) for an introduction to this approach.
9. Adapted from a list in 'How Children Fail', John Holt, 1964.

National curriculum assessments

National assessment at the end of Key Stages 1 and 2 aims to assess pupils' mastery of both the content of the curriculum and the depth of their understanding and application of mathematics. This is exemplified through the content and cognitive domains of the test frameworks. ${ }^{10}$ The content domain exemplifies the minimum content pupils are required to evidence in order to show mastery of the curriculum. The cognitive domain aims to measure the complexity of application and depth of pupils' understanding. The questions, tasks and activities provided in these materials seek to reflect this requirement to master content in terms of both skills and depth of understanding.

Final remarks

These resources are intended to assist teachers in teaching and assessing for mastery of the curriculum. In particular they seek to exemplify what depth looks like in terms of the types of mathematical tasks pupils are able to successfully complete and how some pupils can achieve even greater depth. A key aim is to encourage teachers to keep the class working together, spend more time on teaching topics and provide opportunities for all pupils to develop the depth and rigour they need to make secure and sustained progress over time.
10. 2016 Key stage 1 and 2 Mathematics test frameworks, Standards and Assessments Agency
www.gov.uk/government/collections/national-curriculum-assessments-test-frameworks

The structure of the materials

The materials consist of PDF documents for each year group from Y1 to Y6. Each document adopts the same framework as outlined below.

The examples provided in the materials are only indicative and are designed to provide an insight into:

- How mastery of the curriculum might be developed and assessed;
- How to teach the same curriculum content to the whole class, challenging the rapid graspers by supporting them to go deeper rather than accelerating some pupils into new content.

The assessment activities presented in both columns are suitable for use with the whole class. Pupils who successfully answer the questions in the left-hand column (Mastery) show evidence of sufficient depth of knowledge and understanding. This indicates that learning is likely to be sustainable over time. Pupils who are also successful with answering questions in the right-hand column (Mastery with Greater Depth) show evidence of greater depth of understanding and progress in learning.

This section lists a selection of key ideas relevant to the selected programme of study statements.

This section lists a selection of key National Curriculum programme of study statements. The development and assessment of these is supported through the questions, tasks and activities set out in the two columns below.

Number and Place Value

Selected National Curriculum Programme of Study Statements

Pupils should be taught to:

- count to and across 100, forwards and backwards, beginning with 0 or one, or from any given number
- count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens
- given a number, identify one more and one less

The Big Ideas

The position a digit is placed in a number determines its value.
The language used to name numbers does not always expose the place value, for example the word 'twelve' does not make it transparent that the value of this number is ten and two. It is important that children develop secure understanding of the value of each digit.
Place value is based on unitising: treating a group of things as one 'unit'. In mathematics, units can be any size, for example units of $1,2,5$ and 10 are used in money. In place value units of 1, 10 and 100 are used.

Mastery Check

Please note that the following columns provide indicative examples of the sorts of tasks and questions that provide evidence for mastery and mastery with greater depth of the selected programme of study statements. Pupils may be able to carry out certain procedures and answer questions like the ones outlined, but the teacher will need to check that pupils really understand the idea by asking questions such as 'Why?','What happens if ...?', and checking that pupils can use the procedures or skills to solve a variety of problems.

Mastery

Compare amounts.
What's the same? What's different?
Children compare the bead strings and notice:
One has 9 beads and the other has 6 beads.
9 is 3 more than 6.
6 is 3 less than 9.
Pupils should be able to successfully respond to questions such as:

- Count forwards from 36, etc.
- Point to the third object in the line.
- Show me 8 cubes.

Pupils should demonstrate one to one correspondence, cardinality and conservation of number.

Mastery with Greater Depth

I am going to count on from 20. Will I say the number 19? Convince me.
I am going to count on in twos from 3 . Will I say an even number? Convince me.
I am going to count backwards from 20. How many steps will it take to reach 0 ? Convince me.

I am going to count backwards in twos from 20. How many steps will it take to reach 0? Convince me.

Mastery				Mastery with Greater Depth
Write the missi $\begin{aligned} & 19 \quad \text { is } 1 \\ & 33 \quad \text { is } 1 \\ & 54 \\ & 59 \end{aligned}$	mber n n			Complete:
Look at the grid	$\begin{gathered} \text { ose a } \\ \hline 49 \\ \hline 40 \end{gathered}$	$\begin{aligned} & \frac{d}{d o n} \\ & \hline \frac{50}{50} \\ & \hline \end{aligned}$	second grid.	Gemma thought of a number. One more than her number was 18. What was her number? Gemma thought of a number. Ten more than her number was 67. What was her number? Gemma thought of a number. Ten less than her number was 71 . What was her number?

Mastery						Mastery with Greater Depth
Complete:						Alin says, 'If I start at 5 and count in fives I will say the number 100.' Is he correct? Explain your reasoning. Sita says, If I start at 17 and count in twos I will say the number 28.' Is she correct? Explain your reasoning.
5	10				30	
4 6 12						
			40	50	60	

Addition and Subtraction

Selected National Curriculum Programme of Study Statements

Pupils should be taught to:

- represent and use number bonds and related subtraction facts within 20
- add and subtract 1-digit and 2-digit numbers to 20, including 0

The Big Ideas

Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20. For example, given $8+7$, thinking of 7 as $2+5$ and adding the 2 to 8 to make 10 and then the 5 to total 15 .
Thinking of part whole relationships is helpful in linking addition and subtraction. For example, where the whole is 6 , and 4 and 2 are parts. This means that 4 and 2 together form the whole, which is 6 and 6 subtract 4 leaves the 2 and 6 subtract 2 leaves the 4 .

Mastery Check

Please note that the following columns provide indicative examples of the sorts of tasks and questions that provide evidence for mastery and mastery with greater depth of the selected programme of study statements. Pupils may be able to carry out certain procedures and answer questions like the ones outlined, but the teacher will need to check that pupils really understand the idea by asking questions such as'Why?','What happens if ...?', and checking that pupils can use the procedures or skills to solve a variety of problems.

Mastery

Use the pattern to complete the number sentences.

$0+5=5$
$1+\square=5$
$2+\square=5$
$3+\square=5$
$4+\square=5$
$5+\square=5$
Now do the same for rows of 6 counters, 7 counters, 8 counters, 9 counters and 10 counters.
Children should be able to recall all number bonds to and within 10. Exposing the structure of the mathematics supports this process. They should then apply this to number bonds to 20 , so if $5+3=8,15+3=18$

Mastery with Greater Depth

I'm thinking of a number. I've subtracted 5 and the answer is 7 . What number was I thinking of? Explain how you know.

I'm thinking of a number. I've added 8 and the answer is 19 . What number was I thinking of? Explain how you know.

I know that 7 and 3 is 10 . How can I find $8+3$? How could you work it out?
Show children a price list with items costing up to 20p.
I have 20 p to spend. If I spend 20p exactly, which two items could I buy?
And another two, and another two.
If I bought one of the items how much change would I have? And another one, and another one.

Mastery

Mastery with Greater Depth

Use the first number sentence to complete the second number sentence.

$$
\begin{array}{ll}
4+3=\square & 7+\square=9 \\
7-\square=4 & 9-\square=7
\end{array}
$$

$$
\begin{array}{ll}
5+2=\square & \square+3=9 \\
\square-\square=2 & \square-\square=\square
\end{array}
$$

Captain Conjecture says, 'If you add 0 to a number, the number stays the same.'
Do you agree?
Explain your reasoning.
Complete:

$10+\square=10$	$6+\square=6$
$20-\square=20$	$16-\square=16$

What do you notice?

Captain Conjecture says,

'If you add together six 0 s the answer is 6.'
Do you agree?
Explain your reasoning.

Complete:

$3+\square+3=9$
$6+3+\square=9$
$7+\square+1=10$
$7+1+\square=11$

Multiplication and Division

Selected National Curriculum Programme of Study Statements

Pupils should be taught to:

solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

The Big Ideas

Counting in steps of equal sizes is based on the big idea of 'unitising'; treating a group of, say, five objects as one unit of five.
Working with arrays helps pupils to become aware of the commutative property of multiplication, that 2×5 is equivalent to 5×2.

Mastery Check

Please note that the following columns provide indicative examples of the sorts of tasks and questions that provide evidence for mastery and mastery with greater depth of the selected programme of study statements. Pupils may be able to carry out certain procedures and answer questions like the ones outlined, but the teacher will need to check that pupils really understand the idea by asking questions such as 'Why?', 'What happens if ...?', and checking that pupils can use the procedures or skills to solve a variety of problems.

Mastery	Mastery with Greater Depth	
Ask pupils to use concrete objects to answer questions such as: What is double 4? What is half of 6 ?	Captain Conjecture says, 'I can double any number, but I can only halve some numbers'. Do you agree? Explain your reasoning.	
Show pupils pictures or groups of objects like the examples below. Ask questions such as 'How many biscuits are there altogether?' 'How many cherries are there altogether?' Observe how pupils count the objects. Do they count in twos, fives etc. or do they count in ones?	If I start on 0 and count on in fives will I say the number 55 ? If I start on 4 and count on in twos will I say the number $17 ?$ If I start at 10 and count on in tens will I say $100 ?$	

Mastery	Mastery with Greater Depth
Sarah is filling party bags with sweets. She has 20 sweets altogether and decides to put 5 in every bag. How many bags can she fill?	How else could 20 sweets be put into bags so that every bag had the same number of sweets? How many bags would be packed each time?
Anna is counting in fives: 5, 10, \square , 20, \square , \square , ... Fill in the missing numbers. Anna says if she keeps on counting in fives she will say the number 54 . Is she right or wrong? Can you explain?	If you counted back from 50 in tens, would you say 0 ? Can you explain?
I can see 10 wheels. How many bicycles?	Toy aeroplanes have 5 wheels. How many wheels would you need to make different numbers of aeroplanes?
Show 19 p using only $2 p, 5$ p and 10 p coins. Find three different ways to do it. 5p 10p	Using only 2 p, 5 p and 10 p coins, can you show 20 p? In how many different ways can you do this? Are you sure you have got them all? Explain how you know.
Ali buys 3 bags of apples. Each bag has 4 apples in it. How many apples does he buy?	Lollies cost 5p each. A pack of 3 lollies costs 13 p. How much money do you save when you buy a pack of 3 lollies instead of 3 single lollies?

Fractions

Selected National Curriculum Programme of Study Statements

Pupils should be taught to:

- recognise, find and name a half as one of two equal parts of an object, shape or quantity
- recognise, find and name a quarter as one of four equal parts of an object, shape or quantity

The Big Ideas

Fractions express a relationship between a whole and equal parts of the whole. Ensure children express this relationship when talking about fractions. For example, 'If the circle (where the circle is divided into four equal parts with one part shaded) is the whole, one part is one quarter of the whole circle.'
Halving involves partitioning an object, shape or quantity into two equal parts.
The two parts need to be equivalent in, for example, area, mass or quantity.

Mastery Check

Please note that the following columns provide indicative examples of the sorts of tasks and questions that provide evidence for mastery and mastery with greater depth of the selected programme of study statements. Pupils may be able to carry out certain procedures and answer questions like the ones outlined, but the teacher will need to check that pupils really understand the idea by asking questions such as 'Why?','What happens if ...?', and checking that pupils can use the procedures or skills to solve a variety of problems.

Colour half of each whole shape:	Which of these show half of each whole
shape?	
Explain your reasoning.	

Mastery

Sam and Tom share the fruit equally. There are 4 apples, 4 oranges, 2 pears and 2 bananas.
How many of each fruit do they receive?
Complete the table below.

Mastery with Greater Depth

Sam and Tom share the fruit equally. There are 4 apples, 3 oranges, 1 pear and 1 banana.
How many of each fruit do they receive?
Complete the table below.

	Apples	Oranges	Bananas	Pears
Sam				
Tom				

Four children share a pizza equally. Draw a diagram to show how much pizza each child gets.
What fraction of the pizza does each child eat?

Four children share a bag of 12 marbles equally. Draw a diagram to show how many marbles each child gets.
What fraction of the bag of marbles does each child get?
Complete this halving wall.

20	
10	

Choose any number and create your own halving wall.

	Apples	Oranges	Bananas	Pears
Sam				
Tom				

Four children share 2 pizzas equally. Draw a diagram to show how much pizza each child gets.
What fraction of the pizzas does each child eat?

Four children share two bags of 8 marbles equally. Draw a diagram to show how many marbles each child gets.
What fraction of one bag of marbles does each child get?
Complete this halving wall.
What is the relationship between the top row and one part of your final row?
Explain your reasoning.

20			
10			

Choose any number and create your own halving wall.

Measurement

Selected National Curriculum Programme of Study Statements

Pupils should be taught to:

- compare, describe and solve practical problems for measurement and begin to record the following:
- lengths and heights [for example, long/short, longer/shorter, tall/short, double/half]
- mass/weight [for example, heavy/light, heavier than, lighter than]
- capacity and volume [for example, full/empty, more than, less than, half, half full, quarter]
- time [for example, quicker, slower, earlier, later]

- tell the time to the hour and half past the hour and draw the hands on a clock face to show these times

The Big Ideas

Measurement is about comparison, for example measuring to find out which rope is the longest.
Measurement is about equivalence, for example how many cubes are equivalent to the length of the table or the mass of the teddy?
Standard units can initially be introduced through using a unit that is greater than the things being compared, for example comparing the capacity of a cup and a carton by filling each and pouring into matching bottles to compare the two.
Measuring is a practical activity and the activities below should be conducted in practical contexts, using real materials.

Mastery Check

Please note that the following columns provide indicative examples of the sorts of tasks and questions that provide evidence for mastery and mastery with greater depth of the selected programme of study statements. Pupils may be able to carry out certain procedures and answer questions like the ones outlined, but the teacher will need to check that pupils really understand the idea by asking questions such as 'Why?','What happens if ...?', and checking that pupils can use the procedures or skills to solve a variety of problems.

Mastery

LENGTH

Which line is longer?

Explain your reasoning.
Coser

Mastery with Greater Depth

A long brick is twice the length of a short brick.
Which is longer:
2 long bricks or 3 short bricks?
3 long bricks or 5 short bricks?

MASS
Here are three items.
Can you sort them from lightest to heaviest by feeling them with your hands?
Give pupils three items that are quite different in mass.

Mastery	Mastery with Greater Depth
CAPACITY Captain Conjecture says,'All of the glasses contain the same quantity of lemonade.' Do you agree? Explain your reasoning.	Dave has a 1 litre and a 2 litre bottle. He pours the water from the small bottle into the large bottle. Mark where the water comes to on the large bottle.

Mastery	Mastery with Greater Depth
Sid has a full bottle of drink. He pours it into a jug. Which has the greater capacity, the bottle or the jug?	Point to a glass which is about half as full as the glass in the red oval? Can you point to a glass which is about twice as full as the glass in the blue oval?
TIME Match the clocks to the following times: half past nine five o'clock half past two seven o'clock	Jackie is looking forward to the events marked on the calendar. Use the clues to identify the date that she carried out each activity. Jackie is going to a party at the weekend. This is \square January. She is visiting her aunty on a Tuesday. This is \square January. Three days after the party she is going swimming. This is \square January. Near the end of the month she is going to the cinema. This is \square \square \square January.

Mastery

Sam leaves for school at 8 o'clock. Jay leaves half an hour later than Sam. Circle the clock which shows when Jay leaves for school.

Explain your reasoning.

Circle the times which are shorter than 1 week.
1 year 1 day 1 minute 1 hour 1 month

Draw nine o'clock on this clock face:

Draw half past one on this clock face:

Here are some clocks where the minute hand has broken off. Use the hour hand to work out what time it is.

Geometry

Selected National Curriculum Programme of Study Statements

Pupils should be taught to:

- recognise and name common 2-D and 3-D shapes, including:
- 2-D shapes [for example, rectangles (including squares), circles and triangles]
- 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]
- Describe position, direction and movement, including whole, half, quarter and three-quarter turns

The Big Ideas

It is important for children to be familiar with a range of 2-D and 3-D shapes and not just recognise them in specific orientations, e.g. thinking that this \triangle is a triangle but this ∇ or this \square are not.
It is preferable to introduce 3-D shapes before 2-D shapes, since 2-D shapes only exist in the real world as faces of 3-D shapes.
An emphasis should be placed upon identifying and describing the properties of shapes. It is important that pupils develop the correct mathematical language to do so.
The development of precise language to describe position and movement is important.

Mastery Check

Please note that the following columns provide indicative examples of the sorts of tasks and questions that provide evidence for mastery and mastery with greater depth of the selected programme of study statements. Pupils may be able to carry out certain procedures and answer questions like the ones outlined, but the teacher will need to check that pupils really understand the idea by asking questions such as 'Why?', 'What happens if ...?', and checking that pupils can use the procedures or skills to solve a variety of problems.

Mastery

Sort a range of 3-D objects into groups:

Explain how you have sorted them using mathematical names for the shapes.

Mastery with Greater Depth

What's the same and what's different about these shapes?

Which could be the odd one out and why?
Could each one be the odd one out?
Explain your reasoning.

Mastery

Just knowing the correct mathematical names of shapes doesn't constitute mastery. Pupils should be able to recognise shapes and describe their properties.
Check that pupils:
a) can recognise shapes in different orientations;
b) are able to describe what is special about certain shapes (e.g. a triangle has 3 sides and 3 corners or vertices).

Have a range of shapes in a'feely bag'.
Can you feel for the triangle, the square, the rectangle?
Explain how you know.
Children should describe the shapes, using their properties.

Mastery with Greater Depth

Provide children with a variety of 3-D shapes and ask:

What's the same and what's different between these shapes?
Children make comparisons, drawing out the properties of shape and using language such as straight, curved, number of vertices.

Tom says, 'My shape has 4 rectangular faces and 2 square faces. What is my shape?'

Sam says, 'My shape has 2 triangular faces and 3 rectangular faces. How many vertices does my shape have?'

[^0]: 3. Helen Drury asserts in 'Mastering Mathematics' (Oxford University Press, 2014, page 9) that: 'A mathematical concept or skill has been mastered when, through exploration, clarification, practice and application over time, a person can represent it in multiple ways, has the mathematical language to be able to communicate related ideas, and can think mathematically with the concept so that they can independently apply it to a totally new problem in an unfamiliar situation.'
