A Systems-Based Review of Demi's One Grain of Rice By Linda Booth Sweney

Book Title: One Grain of Rice: \mathcal{A} Mathematical Folktale Bookauthor: Demi
Publisher: Scholastic Press: New York
Format: sophisticated picture book; fiction
Age range: 8 and up

Systems Thinking Concepts: reinforcing feedback, time delays, exponential growth

A Quick Look at the Story: In this wonderfulteaching tale from India, a clever village girloutwits a powerful raja through fer ability to recognize a Gasic pattern common to many systems. That pattern is exponentialgrowth. \mathcal{A} the beginning of the story, we are introduced to the raja as someone who betieved he "was wise and fair, as a raja should be." Yet he requires villagers in fis province to turn over almost all their rice for safe storage, le aving them only enough to get by. When a year of drought arrives, famine and funger ensue. The villagers beg the raja to release some of the rice from the royal store but he refuses. As fis people become more and more famished, the raja decides to have a feast for fim and his court. As a parade of elephants returns from the royal storefouses loaded down with
sacks of rice, Rani, a clever village girl, walks befind them, colle cting falling rice in her skirt. She is caught by the royalguards, but when they accuse her of stealing she tells them she is collecting the rice to return to the raja. The raja, striving to be wise and fair, decides to reward her for returning his rice. He tells Rani: "Askme for anything and you shall have it."

To the raja's great surprise, Rani asks for just one grain of rice. When the raja says that is not enough of a reward, she acquiesces and asks that he give her one grain of rice on the first day. Theneach day, for the following thirty days, he is to give her double the rice he gave her the day before. The raja considers this to be a modest request and readily agrees. By the end of the thirty days, Rani has more than a billion grains of rice and the raja has no more to give. The raja, having le arned an important lesson both about math and about fairness, promises to only take as much rice as he needs from now on.

Teacfing Tips: Rani understood a mathematical phenomenon that can of ten Ge difficult to grasp: doubling anything, in this case rice, always le ads to exponential, rather than line ar, growth. If we start out with 1 , we then
double it and get 2, then 4, 8, 16, 32, 64, 128, 256,512, 1024, 2048. We've jumped to a verylarge number in only 11 doublings. (Tfiere is a well laid out chart on the last page of the book that shows the amount of rice per day for thirty days.) One way to explore the dynamics of doubling with students is to first look at a behavior-over-time graph of the growth of Rani's rice store:

Growth of Rice in Rani's Store

What is so striking about this graph? It shows why the raja could have so readily agreed to Rani's request. At first, it appears that doubling one grain of rice will yield at most enough for one bowl by the end of the month. As
the graph and the causalloop diagram belowillustrate, positive feedback sets off a doubling pattern that starts slowly.

\mathcal{A} she doles out the rice, no significant change in the amount of rice is noticeable, even as the number of rice grains double from 1 to 2 to 4 to 8 to 16 to 36 and so on. Then, although the underlying growth pattern fasn't changed at all, an explosion seems to occur. By the 30 th doubling, Rani has actually accumulated over one billion grains of rice.

So why do most of us profoundly underestimate the effect of exponential growth as the raja did? One answer may be that much of the expansion and change in our daily lives is essentially line ar in nature, therefore a great deal of our experience is with linear growth, not
exponential growth. Many of us rely on our experience with line ar systems when we estimate the numbers or the befhavior that will result from exponential expansion. A line ar process occurs when driving the car; you add, for example, 50 miles per hour to the distance traveled. An exponential process would, for example, double the speed every hour. So, the larger the quantity of something (for example, number of grains of rice, amount of money in a bank account) the greater the rate of growth of that quantity. And then, as a result of this reinforcing process, we see an evengreater quantity (of rice, people, money, etc.) in the future. These reinforcing loops lie at the heart of exponentialgrowth we see around us everyday, e.g., compounding interest, population growth, rising productivity, and even arms races. ${ }^{1}$

You can use the following traditional French riddle as another way to ilfustrate the surprising nature of exponential growth: Suppose a water lily is growing on a pond in your backyard. The lily plant doubles in size each day. If the lily were allowed to grow unchecked, it would completely cover the pond in 30 days, choking out all other forms of life in the water. For a long time, the plant

[^0]seems small, so you decide not to worry about cutting it back until it covers half the pond.
How much time will you have to avert disaster, once the lily crosses your threshold for action?

The answer is, "One day." The water lify will cover half the pond on the 29 th day; on the $30^{\text {th }}$ day, it doubles again and covers the entire pond. If you wait to act until the pond is half covered, you have only 24 fours before it chokes the life out of your pond.

Questions to Ask:

- What happens in the story of One Grain of Rice?
- How would you describe the nature of doubling to some one else?
- Where do we see the impact of doubling (leading to exponential growth) in reallife? (Examples you can provide to stimulate thinking are: spread of rumors, accumulation of personal problems, and a 6 ank account .- as interest accumulates and money is not spent.)

Partner Stories and Activities: Stories: You can try contrasting $\mathcal{D e m i ' s}$ One Grain of Rice with Anno's Magic Seeds (6y Mitsumasa Anno) and $\mathcal{T} u c k$ Everlasting by $\mathcal{N a t a l i e ~ B a b b i t . ~ I n ~} \mathcal{T} u c k$ Everlasting for example, a 10-year-old girldiscovers a magic spring, which
turns out to be a fountain of youth. The story explores the lure and implications of the ultimate example of unlimited growth \cdots the ability to live forever.

Activities: Severalexercises in The Systems Thinking Playbook also explore the dynamics of exponentialgrowth. Paper Fold, for example (found in volume III), works well to give students, young and old, a way to experience exponentialgrowth by folding a piece of paper, or a large sheet. Group Iuggle (vol. II) is another good exercise to explore this dynamic.

References:

- For further discussion about exponentialgrowth, see the article by Iofn Sterman (1994) "Learning in and about complex systems." System Dynamics Review10(2-3), p.291-330.
- For a discussion of how exponentialgrowth is common to a variety of systems, see the Creative Learning Exchange we bsite, particularly SE1995-08: STin25WordsorLess.pdf.

[^0]: ${ }^{1}$ This discussion is adapted from Booth S we eney and Me adows (2001) The Systems Thinking Playbook, volume III.

